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There i s  apt t o  be much uncer ta in ty  i n  any program o f  planetary explora- 
t i on .  This uncer ta in ty  leads na tu ra l l y  t o  poss ib le  uncer ta in ty  i n  the  t i m e  
per iod  i n  which planetary quarantine i s  des i rab le and t o  poss ib le  uncer ta in ty  
i n  the t o t a l  number o f  missions t o  be launched i n  the  v i c i n i t y  of any given 
planet.  

A model i s  developed i n  t h i s  repo r t  which makes poss ib le  the  de r i va t i on  
of mission non-contamination requirements w i thout  a p r i o r i  knowledge of e i t h e r  
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number o f  missions t o  be used i n  explor ing the p lanet  i n  question. 
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I - In t roduc t i on  

The use of mathematical models i n  the  development and analys is  o f  a 

program i s  described i n  [l] and [Z]. It i s  argued i n  these documents tha t :  

(i) modeling i s  useful i n  r e l a t i n g  primary program object ives t o  act ions 

designed t o  achieve them w i t h  an acceptable associ ated penal ty  , 

and 

(ii) modeling i s  usefu l  i n  determining reasonable spec i f i c  primary 

ob ject ives.  

A poss ib le  means o f  accomplishing t h i s  i n  the  planetary quarantine program 

i s  discussed. 

i s  constructed i n  which the object ives a t  the kth l e v e l  are analyzed i n  terms 

o f  the “ s i g n i f i c a n t  factors’ ’  a f fec t ing  t h e i r  achievement, and the ob jec t ives  

are then re la ted  t o  these s ign i f i can t  fac to rs  using mathematical models. The 

kth l eve l  ob ject ives are then t rans la ted  i n t o  ( k+l)st l eve l  ob jec t ives  i nvo l v inq  

the model parameters representing the s i g n i f i c a n t  factors.  This process i s  

continued u n t i l  ob ject ives which are d i r e c t l y  phys ica l l y  rea l i zab le  are 

obtained. The se lec t ion  o f  both the s i g n i f i c a n t  fac to rs  and models i s  l a rge l y  

a matter of judgement. 

I n  order t o  r e l a t e  ob jec t ives  t o  actions, an ob jec t i ve  h ierarchy 

I t i s  the purpose of t h i s  paper t o  discuss: 

(1 )  

(2 )  

the  nature o f  p lanetary quarantine primary (lSt l e v e l )  object ives,  

the  s i g n i f i c a n t  factors  a f f e c t i n g  the achievement o f  p lanetary  

quarant i  ne primary object ives , and 

( 3 )  a sequential decision model f o r  r e l a t i n g  these s i g n i f i c a n t  fac to rs  

t o  the primary object ives.  

General ly speaking, the conclusions t o  be drawn are these: 

1 



- I n  attempting t o  develop a na t iona l  program upon which ac t ion  may 

be based, non-contamination object ives should no t  be considered 

exc lus ive of o the r  nat ional  ob ject ives re la ted  t o  space explorat ion.  

There are many sources of uncer ta in ty  i n  any space explorat ion 

program, and these w i l l  i n f luence the attainment of the  planetary 

quarantine object ives.  

The sequent ia l  dec is ion model presented here seems t o  be capable 

o f  a l low ing  these uncer ta in t ies t o  be considered i n  a planetary 

quarant i  ne program. 

- 

- 
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I I - P1 anetary Quaranti ne Ob j e c t i  ves 

A. B C  

The National Academy of  Sciences i n  1958 recognized the possibi l i ty  

tha t ,  w i t h  the advent of space exploration, ex t ra te r res t r ia l  bodies might 

become contaminated w i t h  l i v i n g  t e r r e s t r i a l  organisms. The Academy expressed 

a concern over the possible detrimental consequences of such an occurrence [3 1. 

An -- ad hoc committee, the Committee on Contarninati on by Extraterrestr i  a1 

Exploration ( C E T E X ) ,  was formed by the International Council of Sc ien t i f ic  

Unions (ICSU) i n  1958 t o  study this  potential problem [3  1. In i t s  short  

life-time (1958-1959), this committee recognized two principles pertinent to  

the discussion here. The f i r s t  was that  certain knowledge tha t  a planet was 

not contaminated was, i n  a l l  likelihood, possible only i f  that  planet was 

avoided by space vehicles? T h e  second was tha t  exploration of planets would 

take place, and t h a t  the nations involved i n  such exploration would determine 

thei r own time schedules fo r  t h i s  exploration? The commi t t ee  expressed 

concern tha t  the time i n  which t o  f i n d  an acceptable solution to  the contamina- 

t ion problem was short ,  and f e l t  that  some immediate action was necessary [ 4  3. 
Accordinqly, the problem was referred to  a permanent committee, the Committee 

on Space Research (COSPAR),  of the ICSU. 

COSPAR, acknowledging the uncertainty i n  knowledge about the contamination 

of ex t ra te r res t r ia l  bodies recognized by CETEX s t a t e s  ([  61, 1966):  

I t  i s  suggested, therefore, that  the basic probability of 
1 X 

biological exploration continues to  be accepted as the g u i d i n g  c r i te r ion  
for  the exploration of Mars, o r  other planets deemed important for  the 
investigation of extra- terrestr ia l  l i f e  o r  precursors or remnants 
thereof. 

tha t  a planet will be contaminated d u r i n g  the period of 

* 
A liberal interpretation o f  the CETEX reports 141 and [SI. 
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As yet ,  there appears t o  be no spec i f i c  nat ional  ob jec t i ve  o f  non- 
r 

contamination except general concurrence w i t h  t h a t  o f  COSPAR which spec i f i es  

an ob jec t i ve  t h a t  must be "shared" by a l l  nat ions.  

The general i n t e n t  of the COSPAR ob jec t i ve  seems reasonable, so t h a t  

i t  i s  assumed i n  t h i s  document tha t  the nat ional  primary ob jec t ive  f o r  non- 

contamination i s  o f  the  form: 

OBJECTIVE 1. The p r o b a b i l i t y  t h a t  any p lanet  deemed important f o r  

study o f  e x t r a t e r r e s t r i a l  l i f e ,  o r  precursors o r  remnants thereof  , 

be contaminated dur ing  the  next T years s h a l l  n o t  exceed (1  - PN.c.) .  
a 

A 

The term PNeC , i n  t h i s  context, represents the  minimum acceptable p r o b a b i l i t y  

of no t  contaminating the p lanet  i n  quest ion dur ng the  a l l o t t e d  t ime per iod,  

T. 

t o  be var iables (see [l 3) f o r  any spec i f i ca t i on  of a p lanet ,  and, o f  course, 

the  importance o f  any p lanet  i n  the study o f  e x t r a t e r r e s t r i a l  l i f e  i s  a 

I 

The word "contamination" and the parameters T and P N e C  are considered 

mat ter  fo r  decis ion.  

re ta ined from the COSPAR statement. 

The phrase ' 'planets deemed important.." has been 

This t a c i t l y  excludes the  na tura l  

s a t e l l i t e s  o f  the  p lanets  o f  our so la r  system and excludes considerat ion o f  

contaminating meteoroids which might l a t e r  impact Earth and fa lse ly  imply 

the  existence o f  e x t r a t e r r e s t r i a l  l i f e .  Whether t h i s  i s  reasonable o r  n o t  i s  

c e r t a i n l y  a mat ter  o f  opinion. 

B. Other Planetary Quarant ine Objectives 

I t i s  genera l ly  recognized t h a t  the  achievement of Object ive 1 f o r  
L 

c e r t a i n  s p e c i f i c  values o f  PNeC,  would invo lve  an unreasonable o r  impossible 

cost .  Recently, there has been an i n d i c a t i o n  o f  Congressional concern about 

4 
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this possibi l i ty  [ 7). On the other hand, PNeC should be large enough t o  

insure some meaningfulness from the sc i en t i f i c  standpoint. T h u s ,  there is 

another planetary quarantine objective: 

OBJECTIVE 2. 

should be attained in such a manner tha t  the penalty associated w i t h  

i t s  achievement i s  acceptable nationally. 

The objective of non-contamination (Objective 1) 

I n  e f f ec t ,  t h i s  implies t h a t  specif ics  fo r  the variables i n  Objective 1 should 

be chosen so that  the cost of attainment i s  acceptable and the sc i en t i f i c  

penalty is also acceptable. 

There is  a t  l ea s t  one other type 

i n  studying planetary quarantine. Th 

planetary qua ran t ine  ac t iv i t i e s  by f l  

project p l ans  call  for  a Mars landing 

missions have already been launched. 

statement of  the form: 

of objective that  should be considered 

s is  the time constraint  imposed upon 

g h t  project ac t iv i t i e s .  Current Voyager 

i n  1973 [ 8) and,  of course, flyby 

T h i s  leads to  a general objective 

OBJECTIVE 3 .  Means for  achieving Objective 1 should be known 

before the year Y. 
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I11 - Other National Objectives Influencinq Planetary Quarantine Objectives 

A. Reasons for  P1 anetary Quaranti ne 

The statement of a non-contamination objective such as Objective 1 

implies the belief that  such an  objective is  needed. 

such an objective i s  assumed desirable based on arguments of three types: 

pol i t ical  , humanistic, and sc ien t i f ic  (e.g., [3], [9]). Since 

the validity of arguments of the f i r s t  two types i s  primarily a subjective 

matter, the emphasis i n  this document will be upon the sc i en t i f i c  need fo r  

planetary quarantine. 

For purposes here, 

6. Scient i f ic  Objectives 

Exploration tends to  imply the desire  fo r  information. I t  w i l l  be 

assumed tha t  a t  any given time the information which seems most relevant, 

needed and obtainable is being sought ,  and i t  will be further assumed tha t  

relevancy and need are  functions of the knowledge possessed about the subjects 

hei ng  i nves t i qa ted . 
Currently, information about the possible existence of ex t ra te r res t r ia l  

l i fe  (or  i ts  precursors o r  remnants) i s  desired, and, because of this,  the 

need for  planetary quarantine has been expressed. 

t h a t  t e r r e s t r i a l  contamination might  destroy ,a1 ter ,or  make impossible the 

detection of ex t ra te r res t r ia l  l i f e  forms i f  they exist o r  fa lsely imply 

their existence i f  they do not. T h u s ,  the desire for  planetary quarantine 

is dependent upon the desire for  biological information, and the l a t t e r  i s  

par t  of the overall desire for  sc ien t i f ic  information about the so la r  system. 

T h i s  implies tha t  general s c i en t i f i c  space exploration objectives will 

influence the nature o f  the planetary quarantine program. 

Briefly, the argument is 

6 



There are  several items related t o  space exploration which seem relevant 

These are: t o  any consideration of planetary quarantine. 

( a )  the current concept of obtaining information involves space probes 

designed t o  perform sc ien t i f ic  experiments on or  near the 

of our solar  system, 

tha t  part  of the sc ien t i f ic  exploration period i n  which b 

experimentation is  to  be performed provides a lower bound 

(see Objective 1 ) ,  

( b )  

planets 

ologica 

for  T 

(c )  s c i en t i f i c  objectives should help to  determine the meaninq of 

McontaminationM and reasonable values of PNqC , 

the exact nature of any exploration program i s  uncertain because 

of the uncertainties i n :  

- sc i en t i f i c  information desired as a function of time 

- 
- 

A 

( d )  

performance of spacecraft and experiments 

knowledge about the p l  anets bei nq explored . 

7 



I V  - S ign i f i can t  Factors Associated w i t h  the Non-Contamination Object ive 

A. Factors In f luenc ing  the Meaning o f  "Contamination" 

The word "contamination", as i t  appears i n  Object ive 1, i s  considered 

t o  be undefined. 

t i o n  o f  i t s  meaning. 

These are: 

There are a t  l e a s t  three factors which inf luence any speci f ica- 

(1) The s c i e n t i f i c  des i re  f o r  non-contamination. There i s  much d is -  

agreement i n  the sc i  en t i  f i c  community about the  appropriate def i n i  - 
t i o n  o f  contamination. Concern ranges from b a c t e r i a l  contamination 

only  t o  various types of chemical contamination (see [3], [ l o ]  

and [ l l ] ) .  Any choice i s ,  a t  best, a guess since the type o f  

in format ion desired, and thus poss ib ly  inf luenced by contamination, 

i s  very l i k e l y  unknown (Section 1II.B.). 

(2)  Current technica l  capabi 1 i t ies .  A t  present, for  example, i t  seems 

impossible t o  predic t ,  even s t a t i s t i c a l l y ,  whether viruses are 

present on a lander capsule p r i o r  t o  i t s  launch. This i n a b i l i t y  

stems p r i m a r i l y  from a lack of s u i t a b l e  means fo r  measuring the 

v i r a l  burden o f  spacecraft surfaces. Inc lus ion  o f  viruses i n  t h e  

d e f i n i t i o n  o f  "contamination" would, therefore, seem impract ica l  

now. - 
( 3 )  Possible penal t ies.  Penalt ies are o f  two basic types. There may 

be a s c i e n t i f i c  informat ion loss i f  "contamination" i s  not adequately 

defined, and the d o l l a r  c o s t  fo r  p lanetary quarantine may prove 

exhorbi t a n t  fo r  some d e f i n i t i o n s  o f  the word "contamination". 

It w i l l  be assumed t h a t  the word "contamination" i s  undefined fo r  purposes 

o f  t h i s  document. However, i t  w i l l  be assumed tha t ,  whatever i t s  d e f i n i t i o n ,  
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i t  is a binary proposition. 

specified time period, o r  i t  is not. 

the measurement or knowledge about the s t a t e  of contamination is possible 

and t h a t  reference t o  the "probability of contamination" is  appropriate. 

That i s ,  e i ther  a planet i s  contaminated i n  a 

I t  i s  also assumed tha t  uncertainty i n  

B. Factors Influencing the Value of T 

The time period, T, i n  which Objective 1 i s  t o  be observed is  influenc 

by a t  l ea s t  four factors.  These are: 

(1)  The nature of the exploration program. The sequencing of a l l  experi- 

mentation i n  the exploration program has a direct bearing on the 

time period i n  which biological experimentation is  t o  be performed. 

( 2 )  The un-certainties i n  exploration. The uncertainties listed i n  

Section 111.6. lead to  uncertainties i n  desired biological information 

experiments and ,hence, time needed for  their performance. The 

uncertainties i n  to ta l  s c i en t i f i c  information desired may have the 

same ef fec t  on T. 

(3 )  Technical capabili t ies.  For example, manned landing on a planet 

I f  this is so,  then  may preclude the attainment of Objective 1. 

the time period T should include no manned landings. 

of manned landing dates i s  l ikely another uncertainty. 

The knowledge 

( 4 )  Scient i f ic  penalties. I f  T is chosen too short ,  and an adequate 

planetary quarantine cannot be maintained for  a s c i en t i f i ca l ly  

desired time, the possibil i ty ex is t s  that  the risk o f  information 

loss is greater than tha t  which is  sc i en t i f i ca l ly  desirable. 

9 
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Because of the implied uncertainty i n  T and the risk associated w i t h  estimat 

i t  will be assumed tha t  T is  unknown. 

means of a t ta in ing  Objective 1 be found which admits an unknown T. 

In essence, th i s  requires t h a t  some 

,. 
C. Significant Factors Associated w i t h  P N a C  

I f  the des 

fo r  a given planet, 

be used i n  explorat 

red time period, T,  of planetary quarantine were known 

and i f  the total  number of spacecraft, n ( T ) ,  t o  
A 

on of tha t  planet were also known, then P N m C  could 

be expressed i n  terms of n ( T )  and P C ( " ( T ) ) ,  the maximum acceptable probability 

of contamination from any of the n ( T )  spacecraft. A simple model doing this 

is: 

,. 
'N.C. = [l - i C ( n ( T ) ) ]  . 

r I t  i s  t h u s  reasonable t o  suppose t h a t  n ( T )  and b c ( n ( T ) )  a r e  related t o  

s iqn i f icant  factors  influencinq the attainment of Objective 1. T h u s ,  there 

a re  a t  l e a s t  four factors  which  are associated w i t h  P N a C  : 
n 

-- The time period T. This is assumed t o  be unknown (Section 1V.B.). 

- The t o t a l  number of spacecraft, n(T), used i n  exploration of the 

planet. 

The maximum acceptable probability of contamination, b P ( n ( T ) ) ,  from 

any one of the n ( T )  spacecraft. 

The  uncertainties. These a r i s e  i n  T (Section 1V.B.). Also, n ( T )  

is uncertain because of the uncertainties i m  

10 
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- the time per iod T, 

- the s c i e n t i f i c  information desired as a funct ion of t i m e ,  

- performance of spacecraft and experiments , 
- 

Independent o f  i t s  dependence upon n(T), Pc 4s inf luenced by 

uncer ta in t ies  in: 

knowledqe about the planet be i  nq i nves t i  qated. 

- 
- 
- 

the proper d e f i n i t i o n  of the word "contamination", 

s c i e n t i f i c a l l y  desirable values f o r  PNaC 

knowledge about the p lanet  under inves t iqa t ion .  

A 

D. Summary o f  S i g n i f i c a n t  Factors 

On the basis o f  the above discussion, the fo l lowing assumptions 

w i l l  be made. 

(1) The word "contamination" i s  undefined. 

knowledge o r  measurement of which i s  uncertain.  The d e f i n i t i o n  o f  

I t  i s  a b inary proposi t ion,  

' 'contamination'' may vary w i t h  t ime as a func t ion  of knowledge gained. 

( 2 )  The t ime period, T, i n  which the non-contamination ob jec t ive  

(Object ive 1 )  i s  appl icable, i s  unknown. 

( 3 )  The p r o b a b i l i t y  P N a C  may be a funct ion of t ime due t o  the s c i e n t i f i c  

uncer ta in t ies  about the def i n i  ti on o f  "contami n a t i  on". 

The fac to rs  which in f luence the attainment o f  Object ive 1 are assumed t o  

be: 

( 1 )  The t o t a l  number o f  spacecraft, n(T), t o  be launched i n  the v i c i n i t y  

o f  the p lanet  i n  question. 

(2 )  The maximum acceptable p r o b a b i l i t y  of contamination, bC(N(T)) , 

for  any of the n(T) spacecraft. 
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( 3 )  The uncertainty i n  T. 

( 4 )  The uncertainty i n  s c i en t i f i c  information desired as a function of 

ti  me 

The uncertainty i n  the performance of spacecraft and experiments. 

The uncertainty about the planet under investiqation. 

(5) 

( 6 )  
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V - A Sequential Decision Model f o r  Planetary Quarantine 

The ob jec t i ve  o f  t h i s  sect ion i s  t o  r e l a t e  Ojbect ive 1 t o  the  fac to rs  

which have been assumed s i g n i f i c a n t  t o  i t s  at ta inment i n  such a fashion t h a t  

the  re la t i onsh ip  der ived i s  consistent wi th  the  assumptions made i n  the  previous 

sect ion.  

The simple model 

,. 
was used i n  the  preceeding sect ion t o  i l l u s t r a t e  the  dependence of PN,c 

the minimum acceptable p r o b a b i l i t y  of not  contaminating the p lanet  i n  quest ion 

dur ing  the a l l o t t e d  t ime per iod T, upon n(T),  the t o t a l  number of missions t o  

be launched i n  the v i c i n i t y  of the p lanet  dur ing the per iod T, and upon 

PC(n(T))  , the maximum acceptable p r o b a b i l i t y  o f  contamination o f  the p lanet  

from each of the n(T) missions. 

A 

This model a lso  demonstrates t h a t  i nd i v idua l  

mission c r i t e r i a  ma.y be derived from Object ive 1 even thouqh the no t ion  o f  

contamination i s  not  well-defined. This i s  done by t r a n s l a t i n q  proqran! 

llcontami nat ion"  requi  rements i n t o  m i  ss i on "con tami n a t i  on" requi  rements i n such 

a fashion t h a t  the word "contamination", whatever i t s  meaning, i s  used i n  the  

same sense i n  both cases. 

meaning o f  the word contamination must be made, and i t  was assumed (Sect ion 1V.D 

Operational ly, o f  course, assumptions reqarding the 

t h a t  such a d e f i n i t i o n  ma.y chanqe w i t h  time. 

Because o f  the assumption t h a t  "contamination" i s  undefined, one o f  the 

goals i n  the development of the model presented here was t h a t  t h i s  a b i l i t y  o f  

13 



the  above model t o  t rans1 a te  program llcontami nation'' requirements i n t o  

mission "contamination" requirements , independent of the  d e f i n i t i o n  o f  

"contamination", should be retained. 

s i m i l a r  t o  

lack o f  knowledge about T and n(T). 

The approach taken was t o  r e t a i n  terms 

(n(T)) ;  a s l i g h t l y  d i f fe ren t  form being necessitated by the  C 

Recall  t h a t  the parameter T was assumed t o  be unknown (Section 1V.D.). 

This and the  other  uncer ta in t ies  l i s t e d  i n  the previous sect ion (Section 

1V.D.) lead t o  a poss ib le  gross uncer ta in ty  i n  n(T), the  t o t a l  number 

of missions t o  be sent t o  the v i c i n i t y  of the p lanet  i n  quest ion i n  the  

t ime per iod T. 

i n  pract ice.  

t o  develop a model which would y i e l d  a mission-or iented requirement such 

as PC(n(T)) and which would, a t  the same time, be opera t iona l l y  less 

dependent on the  t o t a l  number o f  missions t o  be launched. 

I t i s  t h i s  uncer ta in ty  which makes the model above unsui tab le 

I n  view o f  the  uncer ta in ty  i n  n(T), i t  was deemed desi rab le 

I n  at tempt ing t h i s ,  i t  was observed t h a t  there seems t o  be a w i l l i ngness  

on the p a r t  o f  responsible par t ies  t o  make estimates of the  t o t a l  number o f  

missions t o  be launched toward Mars i n  the next 20 years. 

t h a t  N1 represents an estimate o f  the t o t a l  number o f  missions t o  be 

launched i n  the v i c i n i t y  o f  some p lanet  f o r  which Object ive 1 i s  deemed 

appropriate. Then, i f  no more than N1 missions are launched, the  model 

Thus, suppose 

A 

A N1 'N.C. = (1  - Pl) 

y i e l d s  a requirement on the p r o b a b i l i t y  of contamination, P1, f o r  each o f  

the N1 missions, namely, 

14 



n 

That i s ,  i f  no more than N1 missions are launched, and if P1 5 P1 f o r  each 

mission launched, then the p r o b a b i l i t y  t h a t  the p lanet  i s  not  contaminated 

dur ing the explorat ion program, denoted P N S c  , s a t i s f i e s  the i n e q u a l i t y  

* 

> P  N.C. -- N.C. P 

which, i n  essence, represents the attainment of Object ive 1. 

Now, suppose t h a t  a f t e r  t4, of the o r i q i n a l l y  est imated N, missions are 

launched (w i th  !Al s t r i c t l y  less than N1), i t  i s  decided t h a t  the o r i q i n a l  

estimate, N1, i s  incor rec t .  

maininq N1-M1 missions, there w i l l  now be an -- estimate o f  N2 f u r t h e r  missions 

t o  be launched. 

requirement d i f f e r e n t  froin the one s a t i s f i e d  by the f i r s t  M1 missions. 

new requirement may be der ived from the  r e l a t i o n  

This means t h a t ,  instead o f  launchina the re- 

Each o f  these N2 missions w i l l  need t o  s a t i s f y  a contamination 

This 

* A N2 M1 
pN.C. = ( 1  - P1) ( 1  - P 2 )  

That i s ,  P1 defines a requirement (presumably already achieved) on the f i r s t  

M, missions t h a t  have been launched, and a new requirement on P2, the p r o b a b i l i t y  

of contamination f o r  any o f  the remaininq N2 missions, i s  generated; namely 

.. .. 
Not ice t h a t  P2 i s  the on ly  unknown appearing i n  equation ( 2 )  (assuminq PNeC , 

N,,N2, M1 are given) and thus, P2 may be obtained when M1 < N1, as assumed. 
* 

15 



I .. 
If, then, P2 5 P2 f o r  each of the remaining N2 missions and P1 5 P1 f o r  the M1 

missions already launched, one again has PNmC, 

ment o f  Object ive 1. 

.. 
PNaC ; imply ing the a t t a i n -  

Proceedinq i n  t h i s  s p i r i t ,  aqain suppose t h a t  a f t e r  M2 o f  the newly 

estimated add i t iona l  N2 missions have been launched (again M2 < N2), i t  i s  

decided t h a t  the estimate N2 i s  incor rec t .  

add i t i ona l  missions w i  11 be needed. This makes the  estimated t o t a l  number o f  

Instead, i t  i s  estimated t h a t  N3 

missions equal t o  M1 + M2 + N2 w i th  M1 + M2 havinq been launched and N3 

add i t iona l  missions estimated. Then a new requirement on the  p r o b a b i l i t y  o f  

contamination, P3, f o r  any of these remaining N3 missions may be der ived from: 

.. M1 M2 .. N3. 
'N.C. = (1 - Plj ( 1  - P a )  ( 1  - P3) , (3)  

I 

This i s  poss ib le  s ince Fl and P2 are known from so lv ing  equations (1)  and (2),  

i n  t h a t  order. 

equat ion (3) f o r  P3. 

Note t h a t  i f  Fl < N1 and M2 < N2, i t  i s  always poss ib le  t o  so lve .. 

With t h i s  background, we define: 

t o  be the  f i r s t  est imate of the  t o t a l  number o f  missions t o  be 

launched i n  the v i c i n i t y  o f  the p lanet  i n  question, 

N1 

t o  be the number o f  these N, missions launched p r i o r  t o  a reest imat ion 

o f  the t o t a l  number o f  missions required, 

M1 
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I -  

t o  be the second estimate of the total  number o f  missions to  be 

launched i n  the vicinity of the planet i n  question, 
M1 +N2 

t o  be the number of these M1+N2 missions launched pr ior  t o  a t h i r d  

estimate of the number of missions required, 
M1 +M2 

and general ly  , 

t o  be the - kth estimate of the to ta l  number of missions to  be 

launched i n  the vicinity of the planet i n  question, and 

to  be the number o f  these missions launched pr ior  t o  the "jl + Mk 
(k+l)st  estimate of the number of missions required. \- I 

Further, i k  i s  defined t o  be the maximum acceptable probability o f  contaminatio 

from any o f  the l a s t  Nk missions needed to  f u l f i l l  the k t h  estimate o f  the tota 

number o f  missions required. 

The model, then, i s  sequential i n  character: 
,. A A ,. 
P1 i s  obtained from equation ( l ) ,  and generally, i f  P1, Pp ,  ..., Pk-1 are 

1 

known, then Pk i s  obtained by solving 

Let P i i )  denote the probability of contamination of the planet i n  question 

from the i th mission. Then,  i f  

17 



j -1 
P!~) L i j ,  f o r  c M, < i < M 

s=l  - j  

and 1 I j  < k, and 

k- 1 

s=1 
P P I  - < Pk, f o r  c M, < i 5 N~ 

then PNeC , the p r o b a b i l i t y  o f  not  contaminating the  p lanet  i n  quest ion dur ing  

i t s  b i o l o g i c a l  explorat ion,  w i l l  s a t i s f y  the  i n e q u a l i t y  

'N.C. 'N.C. 

which represents the achievement of Object ive 1. This statement assumes t h a t  

the  kth estimate o f  the  number o f  missions requi red i s  the f i n a l  est imate. 

One f a c t o r  y e t  t o  be inc luded i n  the  model i s  the  poss ib le  dependence 

upon t ime (Sect ion 1V.D. ) .  This f a c t o r  i s  introduced b.y assuming 
Of %c. 

A 

t h a t  P N a C  may be changed only  when a reest imate of the  needed number o f  missions 

i s  undertaken. Such an assumption may be made w i thout  any loss  of genera l i t y  
A 

s ince  a change i n  P N e C  can always be accompanied by a "no change'' reest imat ion 
- 

Of t he  t o t a l  number o f  missions required. Thus, i n  equation (4 ) ,  PNeC i s  

replaced by the 2 est imate o f  PNec , denoted PNeC,. ( k )  The kth mission-or iented 
A 

requirement, Pk, i s  then obtained from the  expression 

n (1 - Pj) 
j =1  
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A 

for k > 1 ,  and P1 i s  obtained from equation ( 1 )  as before. In  this form, 

I 
* 

the existence of a nonzero solution for  Pk depends upon the magnitude of  

P,, ( k )  ,. . T h a t  i s ,  there i s  a nonzero solution for  i k  i f  and only i f  the r i g h t  
1Y.L. 

hand side o f  equation ( 5 )  i s  less than 

I t  should also be remarked t h a t  i t  

j' sum of numbers n i j ,  i = 1 ,  2, ..., r 

1 (see the Appendix). 

may be desirable t o  treat  N. as a J 
where the division i n t o  r .  numbers J 

is associated w i t h  a desire t o  distinguish between cer ta in  "classes" of missions. 

The dependence o f  the index, r,  upon the estimate number, j ,  i s  included t o  

provide f o r  the possibility that the notion o f  l'classes" may change with time. 

For example, the division may refer t o  "sterilized" and ''unsterilized'l o r  t o  

"lander", "flyby" and ''orbiter" missions. 

by 

I n  this case, equation (5)  i s  replaced 

(k) 
* "ik - 'N.C. 

k- 1 
k. r 

i= l  
n (1 - P i k )  - 

I 

where P i j  is the maximum acceptable probability of contamination 

from any mission of the i th  class desired additionally after the 

of the to t a l  number of missions, i n  t h a t  class, required. Here, 

j 
r 

Mj = c m i j  
i= l  

of the planet 

jth estimate 

and inij  i s  the number of the n i j  estimated missions actually launched prior 

t o  the ( j + l ) s t  estimate of  t h e  t o t a l  number of missions required i n  each 

of the rj+l classes. 
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I n i t i a l l y ,  i n  such an approach, equation 1 i s  replaced by 

.. 'iil - (1) II (1 - Pil) - 
rl 

'N. C. i =1 
(7) 

Notice t h a t  the use of a model based on equations (6) and (7) -does no t  l ead  

t o  unique so lu t ions  f o r  the Pik when rk > 1. This may o r  may no t  be a d i s -  

advantage depending upon the  choice o f  classes t o  be considered (see the Appendix) 

A 

Depending upon the approach chosen, equations (1) and (5) o r  equations 

(6) and (7) y i e l d  a model which provides a sequential means o f  d e r i v i n q  mission 

p lanetary  quarantine requirements from Object ive 1. A t  the  same tine, 

no a p r i o r i  spec i f i ca t i on  of the  tine period, T, o r  the t o t a l  nunber o f  missions, 

n(T) i s  required. 

i s  w i  1 1 i ng t o  admit the possi b i  1 i ty o f  imposing planetary quaranti  ne requi rements 

upon missions f o r  which they are unnecessary. 

I n  fact, no :pos ter io r i  knowledge of T i s  needed i f  one 
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VI - Discussion of the Model 

The remarks i n  this section will be directec. primar ly toward t 

model defined by equations (1) and (5)  of the previous section w i t h  the 

ie 

assumption that P N e C  ( k )  i s  a constant as k varies. A discussion of t h e  more 

general model given by equations (6) and (7 )  may be found i n  the Appendix. 

If i t  i s  assumed that the  reestimates, Nk,are always such that additional 

missions are added t o  the total ,  i.e., 

then 

Thus, the non-contamination cri teria f o r  missions continually become more 

stringent. This i s  examined mathematically i n  the Appendix. 

The usefulness o f  such a model i s  rather obviously dependent upon the 

nature o f  the change in Ckas a function of k. For example, i f  F1 : 
the implied mission requirement appears t o  be an attainable goal [lo]. 

^P2 = 

unreasonable [lo]. 

the ratio Pk/Pk,l as k increases. 

B u t ,  i f  

6, , the second requirement defined by P2 would appear to be 

Hence, i t  would seem desirable to  know something about 
A -  
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It i s  shown i n  the Appendix t h a t  

1 

- -  'k Nk- l  - Mk-l 

'k-1 Nk 
A 

( k )  - (k-l). The "exact" ca lcu lat ions presented below ind i ca te  t h a t  . - 'N.C. when P N e C  

approximation (8) i s  qu i te  accurate. The data i n  TABLES 1 and 2 i s  based upon 

the assumption t h a t  Pi!;.= 0.999 f o r  a l l  k involved. See Page 3. 

Again supposing the worst  s i t ua t i on ,  t h a t  i s ,  Nk > Nk - - Mk-l, i t  
A A  

seems desi rab le t h a t  the  r a t i o  Pk/Pk,I be as la rge  as poss ib le  s ince 

Pk < P 

may be drawn from approximation (8). 

equal t o  (Nk-1 - Mk-1) then Pk/Pk,l w i l l  be near ly  equal t o  one. Thus 

the  des i re  f o r  as l i t t l e  change as poss ib le  i n  mission requirements impl ies 

a des i re  f o r  accurate estimation,at each stage, of the t o t a l  number o f  missions 

A - 
(see the  Appendix). W t h  t h i s  i n  mind, two general conclusions k-1 

The f i r s t  i s  t h a t  if Nk i s  very near ly  
A -  

required. 

The second conclusion regards M k - l .  Suppose t h a t  the kth est imat ion had 

been made when fewer than Mk-1 missions had been launched, bu t  t h a t  the 

t o t a l  number o f  missions estimated a t  the kth stage remained the same. Then 

This i s  essen t ia l l y  an observat ion about the desired nature of Nk. 

the  new 

(Mk-l 
the  kth 

- 
number launched p r i o r  t o  the kth est imat ion may be represented as 

v) and the  new estimate as (Nk + v) where v 2 0. 

requirement, Pk, i s  replaced by Pk(v). 

I n  t h i s  case, 
A A 

Using est imat ion (8), 
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A 

N1 M1 N2 p1 p2 

10 8 

15 12 

20 10 

15 

30 25 

5 1 

10 1 

20 1 

10 6.67 

15 5.00 

20 5.00 

30 5.00 

10 5.00 

20 5.00 

30 5.00  IO-^ 
10 3.33 

20 3.33 

30 3.33 

5 6.67 x 

20 6.67 x 

15 5.00 x l c 5  

3.99 

2.00 

3.99 

2.00 

3.33 

2.50  IO-^ 
1.67 

2.50 

1.66 

1.25 

1.66 

9.98 x 

9.98 x 

8.32 x 

8.31 x 

5.54 x 

TABLE 1 - Two Stage Decisions 

A A 

N1 M1 NZ M2 N3 p1 ?2 p3 

10 5 10 5 10 LOO 5.00 2.50 I O -  
10 8 10 5 10 1.00 2.00 1.00 10- 

20 10 15 10 15 5.00 3.33  IO-^ 1.11 IO- 

15 10 10 5 10 6.67 x 3.33 x loe5 1.67 x 10- 
20 15 20 15 20 5.00 x 1.25 x 3.13 x 10- 

30 25 10 5 10 3.33 x 1.66 x l f 5  8.34 x 10 

TABLE 2 - Three Stage Decisions 
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It can be shown t h a t  

A < 1. 
Pk(v) pk(v-1) Nk- l  - Mk-l i f  '7 

'k-1 'k-1 Nk 

A -  

Here v i s  assumed t o  be greater  than zero. 

des i rab le t o  choose v so t h a t  Pk(")/Fk - i s  maximal, and t h i s  c l e a r l y  

occurs when v i s  chosen as l a r g e  as possible. 

But s ince  Pk/Pk-l < 1, i t  i s  

Thus, i n  order  t h a t  the  

mission requirements be no more demanding than necessary, the dec is ion 

stages should occur as e a r l y  as possible a f t e r  i t  i s  recognized t h a t  an 

increase i n  the number of missions i s  needed. 

As an example, assume t h a t  (Nk-1 - Mk-l)/Nk c 1 f o r  a l l  k,and t h a t  the  

t ime f o r  the kth dec is ion was chosen "ear ly "  so t h a t  (Nk - , - Mk,l)/Nk - - 2 -  - 1 

Then approximation (8) allows one t o  conclude t h a t  

A -  1 -  
'k - pk-l '1' 

Hence i n  p a r t i  c u l  a r  

i, = 1 -  P1 

A - 1  - - P  '5 16 1' 
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I .  

so tha t  four decisions were possible without changing the original cr i ter ion,  

P,, by a factor of 10. Assuming this might be a reasonable c r i te r ion  f o r  

"a t ta inabi l i ty" ,  i t  is possible, under the assumed conditions, to  continue 

to  derive "attainable" c r i t e r i a  through a t  l ea s t  four decision stages. 

Similar types of behavior were exhibited i n  TABLE 2 ear l ie r .  

.a 

T h u s  the mission c r i t e r i a  become more demanding w i t h  time when 

re-estimation constantly indicates a need for  greater numbers of missions. 

However, i f  the estimates a r e  made "reasonably" early and are  not too 

great w i t h  respect t o  the unlaunched remainder of the previously estimated 

number of missions, the model seems to  provide a reasonable means of 

deriving mission c r i t e r i a  for the newly estimated number t o  be launched. 

I f ,  a t  any stage, the newly estimated total  number of missions is  

less  t h a n  the previous total  number estimated, one has a choice. The 

associated lessening of the stringency of mission requirements may be 

adopted, o r  one may continue to use the previous requirement. 

choice m i g h t  be desirable i f  the previous requirement was s t i l l  acceptable 

and there was concern over possible future increases i n  the number of 

missions required (even though such an occurrence was not being contemplated). 

The l a t t e r  

The more general model represented by equations (6)  and (7)  of the 

the previous section has not been discussed primarily fo r  two reasons: 

possibi l i ty  that  solutions may not exist i f  PNaC ( k )  varies and, more importantly, 

the non-uniqueness o f  solutions. 

estimate resul ts  i n  an increase i n  the number, niik , o f  missions required 

and P ( ~ ) / P ( ~ - '  N.C. N.C. 2 I ,  then a t  l e a s t  one o f  the ra t ios ,  6ik/6ik-1 must be less 

than one. I t  i s  also true that  the r a t io  6 j k / P j k - l  i s  quite sensitive t o  

I t  i s  safe  t o  asser t  tha t  i f  the kth 
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A 

changes i n  PNeC, when Pik-1 i s  small. This i s  discussed f u r t h e r  i n  the 

Appendix. 

B. Possible Compensating Factors 

There are a t  l e a s t  th ree  fac to rs  which may help t o  compensate 

fo r  the  decrease i n  mission requirements, Pk, w i t h  increas ing k (aga in  

assuming a tendency toward increased numbers o f  missions). These w i l l  now 

be d i  scussed. 

A 

I. Use of Estimates f o r  i k  

I n  the actual  use o f  the  model shown as equations (1) and (5), 

w i t h  P N e C  independent of k, i t  i s  poss ib le  t o  use the estimates 

o f  actual 'contamination i n  the expressions (1 - ii)Mi. That i s ,  the  

- a p o s t e r i o r i  p r o b a b i l i t i e s  of contamination fo r  missions launched i n  

the jth stage may be known as a r e s u l t  of measurements taken a f t e r  t o  

t h e i r  launch. 
A M i  

Thus, (1 - Pi) may be replaced by an expression o f  the 

form 

n (1 - P..) 
1 J  j=1 

where, i t  i s  assumed t h a t  Pij 
a p o s t e r i o r i  p r o b a b i l i t i e s  o f  p lanetary  contamination. 

s t r i c t l y  less  than Pi, then there w i l l  be a less  s t r i ngen t  mission 

requirement i n  the next stage. 

ii. The Pij are the estimated 
.. 

I f  any Pij i s  

Using t h i s  approach, the model becomes 
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(k) 
'N.C. 

Using this model, one may take advanbage of the f ac t  tha t  miss 

may exceed the planetary quaranti ne requi rements t o  compensate 
a 

the theoretical decrease i n  Pk' The Same may be done, o f  course, w i t h  the 

more general model given by equation (6) and (7). 

2. Change i n  Techni cal Capabi 1 i t i e s  

I n  the course of time, i t  is not unreasonable t o  suppose 

tha t  changes i n techni cal capabi 1 i ti  es woul d make poss i b l  e the 

achievement of more demanding planetary quarantine mission requirements. 

However, compensation for  decreasing Pk from technological chanqe 

tends to  imply a continuing commitment to  research i n  the areas where 

A 

possible benefit may be derived. 

3. Decrease i n  the Probability of Bias 

In [12], the probability of contamination of  a planet from 

a spacecraft was related t o  the probability that  contamination, if  

deposited on the planet, would ''bias'' future experimentation. T h i s  

was, i n  essence, an analysis of Pk solely from the point of view of 

achieving sc i en t i f i c  objectives. 

dependent upon this probability of "biasing" future experimentation. 

I 

A 

Roughly speaking, Pk  is  l inearly 

(9) 

ons 

for  

Thus ,  i f  information gained as a result of experimentation indicates 
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t h a t  deposited contamination i s  less  l i k e l y  t o  "bias" fu r ther  exper i -  

mentation than was o r i g i n a l l y  assumed, one may need t o  take no add i t iona l  

ac t i on  t o  achieve more demanding planetary quarantine requirements. 

C. Relat ionship t o  Objectives Two and Three 

The sequent ia l  decis ion model developed here seems t o  a l low f o r  

the  uncer ta in ty  i n  space explorat ion programs, and i nc l  ude those o ther  fac to rs  

which were considered s i g n i f i c a n t  i n  Section I V .  

i n  he lp ing  t o  der ive values f o r  PNmC which are acceptable from a penal ty 

p o i n t  o f  view (see [ 13 o r  [ 21) as w e l l  as de r i v ing  mission requirements, 

Thus, i t  may be usefu l  
A 

Pk, from f i x e d  values of PNeC . Therefore i t  i s  possible t h a t  t h i s  model 

represents a f i r s t  step toward the at ta inment o f  Object ive 2 (Section 11). 

Because on ly  an estimate of the t o t a l  number of missions requi red i s  needed 

i n i t i a l l y ,  less  in format ion about the  exp lo ra t ion  program i s  requi red a p r i o r i .  

This need f o r  less  in format ion should a i d  i n  the  attainment o f  p lanetary  

quarant ine Object ive 3 (Section 11). 

D. Comparisons w i t h  Other Models 

The f i r s t  p lanetary quarantine"requirements" model [13] attempted 

t o  der ive  i n d i v i d u a l  mission requirements and inc lude the  uncer ta in ty  

a r i s i n g  from the  lack  o f  knowledge about spacecraft and experimental per- 

formance. I n  doing so, however, i t  assumed t h a t  

- the  p r o b a b i l i t y  o f  mission success d i d  n o t  vary appreciably from 

mission t o  mission, 

- the t o t a l  number o f  experiments t o  be performed was known, and 

- i n f i n i t e l y  many missions my be necessary due t o  the  uncer ta in ty  

i n  spacecraft performance. 
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The second o f  these assumptions impl ies t h a t  l i t t l e  considerat ion was 

given, i n  the model, 

about the s c i e n t i f i c  in format ion desired. The f i r s t  assumption may present 

no d i f f i c u l t y .  

c r i t e r i o n  t o  be der ived if the same model w i t h  f i n i t e l y  many missions 

assumed always l e d  t o  a less  s t r ingent  mission requirement. 

i n  [I21 t h a t  t h i s  d i d  n o t  occur. 

t o  uncer ta in t ies  a r i s i n g  from the lack  of knowledge 

The l a s t  assumption would a l low a conservative mission 

It was shown 

A model presented i n  [14] attempted t o  co r rec t  the  l a t t e r  def ic iency,  

bu t  d i d  so by equating an expression der ived i n  [13] under the  assumption 

o f  i n f i n i t e l y  many f l i g h t s  w i th  an expression der ived on the bas is  of 

f i n i t e l y  many f l i g h t s .  This was pointed o u t  i n  [151. 

The o r i g i n a l  model [13] was extended i n  [15] t o  inc lude a means f o r  

Again the essent ia l  d i f f e r e n t i a t i n g  between "hard" and % o f t "  landings. 

features appearing i n  [13] were retained. 

F ina l l y ,  the  model used i n  COSPAR discussions i n  1966 i s  found i n  [16]. 

Essen t ia l l y  the same model appears i n  [171. 

upper bound f o r  the t o t a l  number of missions (d iv ided i n t o  several ''classes") 

i s  known. 

t ime per iod  T and the t o t a l  number of  missions required, n(T). The amount 

o f  knowledge requi red depends upon the  degree o f  rea l i sm desired i n  the  upper 

bounds. Recently [18], th is  model has been re in te rpre ted  so t h a t  the  numbers 

and requirements re la te ,  not  t o  missions, b u t  "sources of contamination". 

The number of such sources depends, of course, upon the  number of missions 

so tha t ,  again, some - a p r i o r i  knowledge about the exp lo ra t ion  program i s  

assumed. Furthermore, t h i s  model introduces the  add i t iona l  problem o f  

enumerating a1 1 the  "sources o f  contamination" and then spec i fy ing  some 

This model assumes t h a t  an 

This assumption impl ies the  existence o f  some knowledge about the  
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proportional "iriiportance" t o  these sources due t o  the non-uniqueness of 

solutions ( fo r  requirements for  each source) inherent i n  the model. To 

accomplish th i s  l a t t e r  i n  any optimal fashion would tend to  imply much 

knowledge about the sourees of contamination and i t s  control a t  each source. 

T h i s  type of information may ultimately be needed i n  any approach t o  planetary 

quarantine, b u t  i t s  inclusion i n  models fo r  possible international use now 

may present some problems. Finally, l'sources of contamination" seem more 

l ike ly  t o  change w i t h  time than do ''classes" of spacecraft, and the model 

makes no allowance f o r  this possibil i ty.  



VI1 - Conclusion 

In this document, the non-Contamination objective of planetary quarantine 

was assumed t o  be of the form: 

OBJECTIVE 1. The probability t h a t  any planet deemed important fo r  

study of ex t ra te r res t r ia l  l i f e ,  o r  precursors or  remnants thereof, 
A 

be contaminated during the next T years shall  not exceed (1 - P N S c . ) .  
I 

Here PN,c  represents the l ea s t  acceptable probabi 1 i ty  that  a planet under 

consideration should not be contaminated i n  the time period T. The word "con- 

tamination" and the parameters T and P N a C  were considered variable. 
I 

I t  was assumed tha t  the primary desire for  a non-contamination objective 

a r i ses  from sc i en t i f i c  objectives. In examining s c i e n t i f i c  objectives, i t  

was found tha t  there appears t o  be much uncertainty i n  space exploration 

programs ar is ing from uncertainties in: 

- sc i en t i f i c  information desired as a function of time 

- performance of spacecraft and experiments 

- knowledge about the planets being explored. 

I t  was observed tha t  w i t h  complete knowledge about a space exploration 

Program, the time period, T ,  in Objective 1 could be determined. Also, i t  

would be possible to  determi ne n ( T )  , the total  number of missions to  be launched 

i n  vioinity o f  the planet i n  question d u r i n g  the period T. I f  these are known, 

then i t  is possible to  derive mission requirements from Objective 1 i n  a simple 

fashion u s i n g  the model 

I L 

= [1 - P C ( n ( T ) ) ]  n ( T )  
'N.C. 
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where ^PC(n(T) ) represents the maximal acceptable probab 

from any o f  the  n(T) missions. 

l i t y  o f  contam nat ion  

The uncer ta in t ies  occurr ing i n  space exp lo ra t ion  make c e r t a i n  a p r i o r i  

knowledge of T and n(T) u n l i k e l y  however, and a model r e f l e c t i n g  t h i s  

uncer ta in ty  seems desi rab le.  

The sequent ia l  dec is ion model presented i n  t h i s  document includes t h i s  

uncer ta in ty  by a l low ing  estimates o f  n(T) t o  be made pe r iod i ca l l y .  A t  the  same 

der ived from these estimates w i t h  the use of 

these requirements are derived i n  such a 

time, mission requirements may be 

the model. A t  any decis ion stage, 

manner t h a t  Object ive 1 w i l l  be a t  

by each o f  the  add i t iona l  missions 

.ained i f  the requirements are s a t i s f i e d  

es ti mated. 

Spec i f i ca l l y ,  the model, i n  i t s  s implest  form i s  given by 

I n (1 - Pi) 
i =1 

where 

i s  the  f i r s t  est imate o f  the  t o t a l  number o f  missions t o  be launched 

i n  the  v i c i n i t y  o f  the p lanet  i n  quest ion 

N1 

i s  the number o f  these N1 missions launched p r i o r  t o  the  second 

est imate o f  the number o f  missions required, 

*1 

and, i n  general, f o r  k > 1 
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i s  the kth  estimate of the to t a l  number o f  missions t o  be 

launched i n  the vicini ty  of the planet i n  question, and 

is  the number of these missions launched pr ior  t o  the (k+l)st 

estimate o f  the number of missions required. 
(:i: Mj) + M k  

Further, i k  i s  defined t o  be the maximum acceptable probabili ty of contamination 

o f  the planet i n  question from any of the l a s t  N k  missions needed t o  fu l f i l l  

the kth  estimate of the to t a l  number of missions required. 

In theory, this model: 

- requires no a pr ior i  knowledge about T o r  n ( T )  o r  the meaning o f  

the word "contaminationll , 
b u t ,  makes use o f  any such knowledge available,  - 

- can make use of &pos te r io r i  knowledge about mission requirements 

ful  f i  1 lment, and 

implies possible penalties fo r  operation without knowledge ( P k  
may decrease as a function o f  k ,  implying more demanding mission 

- 

requirements) . 
The aforementioned penal t i e s  are  minimized by 

- 
- 

accurate prediction o f  the number of missions required, and 

ear ly  readjustment o f  mission numbers when the need f o r  a change 

i s recogni zed. 

These penalties may be compensated f o r  by: 

- 
- 
- 

the use of a posteriori mission knowledae 

the improvement i n  contamination control technology, and 

improved knowledge about the planet being investigated. 
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O f  a l l  the models now available, this appears t o  be the only one which 

makes no - a p r io r i  assumption about T and n ( T ) .  

model makes use of such information when i t  is  available. 

However, this sequential decision 

TWO other possible planetary quarantine objectives were considered. These 

were 

OBJECTIVE 2. The objective o f  non-contamination (Objective 1) 

should be attained i n  such a manner tha t  the penalty associated w i t h  

i t s  achievement is adep tab le  nationally. 

and 

OBJECTIVE 3. Means fo r  achieving 9bjective 1 should be known before 

the year Y .  

The sequential decision model presented in this document may aid appre- 

ciably in the achievement of Objective 3, due t o  the lack of need fo r  precise 

- a p r io r i  knowledge about the exploration proqram. I t  may also provide a 

foundation for  studies aimed a t  the achievement of Objective 2 (see [ 1 1  

o r  c 21). 
T h u s ,  generally speaking, the sequential decision model developed i n  t h i s  

document seems to  possess those at t r ibutes  w h i c h  were assumed desirable on 

the basis of the nature of planetary quarantine objectives as they were 

envisioned here. 
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I X  - Appendix 

This appendix i s  devoted p r i m a r i l y  t o  a mathematical examination o f  the  

more general model presented i n  Section V. Not a l l  o f  the  poss ib le  r e l a t i o n -  

ships are thoroughly examined, the i n t e n t  being on ly  t o  examine those which 

seem basic t o  an understanding o f  the model. 

The model being examined i s  qiven by equations (6 )  and (7)  of Section V, 

v i t . ,  

and, f o r  k > 1, 

j r 
Here, N = c 

i = l  
-j 

The mode 

j 
r 

c mij, i =1 
nij and Mj = 

in i =1 

represented by equations ( Section V ,; a specia 

- - rk = 1. - case obtainable f r o m  t h i s  model by s e t t i n g  rl = r2 - ... 
A 

COMMENT 1. The k t h  mission requirement def ined by Pk may be der ived from 

knowledge o f  the  (k -1)s t  stage only. Spec i f i ca l l y ,  
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To see t h i s ,  one need only  observe t h a t  the  fo l lowing e q u a l i t i e s  are 

va l i d .  From equation ( A Z ) ,  

i =1 

(k )  
- 'N.C 

N.C. 
-po 

( k )  
'N.C 

'N.C. 
( k - i )  

The des i red r e l a t i o n s h i p  fol lows immediately. 

COMMENT 2. A kth stage so lut ion,  t h a t  i s ,  values o f  pi, i n  the range 

0 t o  1, ex i s t s  i f  and only  i f  the  r i q h t  hand s ide of equation (A2) i s  

no greater  than one. 

This i s  ra ther  obvious. I f  a s o l u t i o n  ex is ts ,  then the r i g h t  hand 

s ide must no t  exceed one since the l e f t  hand s ide  does no t  (assuming, 

of course, t h a t  nik 1 0 ) .  Conversely, i f  

each of the terms i n  the product must also equal one (each being less 

than or equal t o  1).  
A 

Hence, each Pik  = 0 i s  a so lut ion.  I f  
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CI 1/Nk 
w i t h  E > 0, then Pik = 1 - (1 - E )  i s  a so lu t ion .  

A A  

I n  i n v e s t i g a t i n g  the r a t i o s  Pik/Pik-l, a t  l e a s t  three questions ar ise :  

- under what circumstances might these r a t i o s  be less than one ( ind ica-  

t i n g  a more demanding mission requirement), 

magnitude of Pi k/Pi k-1 most s e n s i t i v e  to,  and - what fac to rs  i s  the 

- how might these r a t  

I t  seems reasonable t h a t  one 

mission "class" i s  the same 

os be e a s i l y  approximated? 

s i n t e r e s t  i n  Pik/Pik-l i s  greatest  when the 

n both stages. Thus, i t  w i l l  be assumed t h a t  

t h  

- = r. The assumption P N e C . ~  ( k )  PNaC (k-l) i n  COMMENT 3, below, corresponds rk - rk- l  

t o  t h e  assumption t h a t  the  kth overa l l  non-contamination requirement i s  no 

l ess  demanding than t h a t  occurr ing a t  the (k-1)s t  stage. 

w i t h  r r 

( k )  > p (k-l), equation ( A 3 )  may be r e w r i t t e n  Since 'N.C. - N.C. 

so t h a t  

r r 
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On the other hand, i f  p i k / i j k - 1  - 5 1 fo r  a l l  i ,  1 5 i 5 r ,  then 

fo r  a l l  i , so tha t  

c n i k  In (1 - p i k )  c n i k  In ( I  - P ~ ~ - ~ )  
i= l  i =1 

comparing this w i t h  the above equation leaLs to  the conclusion L a t  

a t  l ea s t  one o f  the P i k  < P i k - l .  
L, 

T h i s  comment implies that  the model given by equations (1) and ( 5 )  o f  

Section V when P N S c  ( k )  = PNeC ( k - l )  has the property 

The converse i s  also true so that: 

COMMENT 4. I f  r = 1 and P N e C  (k) . - - 'N.C. ( k - l ) ,  t h e n  

I t  should be remarked tha t  unless each of the "classes" have as many newly 

estimated missions a t  the kth stage as remained t o  be launched i n  the 

(k-l)st, i.e., ' i k  'ik-1, the concl usion i n  COMMENT 3 cannot necessari ly 

be drawn. For example, salving 

"1 2 "22 - wll  "21 (1 - i12) (1 - i**) = (1 - P1,) (1 - i , )  
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w i t h  n12 = wll - 1 and nZ2 = wZ1 + 2 f o r  

i12 and ^P22 so t h a t  Pi 2/i)il 1 ,  
n - 2  

i = 1,2, i s  poss ib le  if Pll > 1 - (1 - PZl) . 
case, and 

For, i f  t h i s  i s  the - 

then ( 1  - A PZ2) "2 = (1 - i l l ) ( '  - iZ1) w21 

so  t h a t  

Thus, 

Therefore, 

But if cl,  - > 1 - (1 - i21)2, then 

n 

so t h a t ,  
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. 

Thus  iz2/P2, 1 also,  and we observe: 

COMMENT 5. 

[and equations (6)  and ( 7 )  i n  Section V ]  i t  may be possible to  increase 

the total  numb2r of missions required a t  the kth stage and ye t  have 

In the general model presented i n  equations ( A l )  and ( A 2 )  

no more demanding mission requirements a t  tha t  stage. In order t o  

do this one must decrease the number of missions of a t  leas t  one "class". 

The possibi l i ty  o f  then obtaining no more demanding requirements a t  the 

k t h  staqe depends upon the relative magnitudes o f  the P i k  - a t  the (k-1)st  
A 

stage and upon the magnitude of P N e C . / P N e c  ( k )  ( k - 1 )  

The observation made in COMMENT 5 leads one t o  consider the possibi l i ty  
A 

Of  "optima11y" selecting the P i k  a t  the k t h  stage. Many possible c r i t e r i a  for 

"optimality" ex is t .  For example, one may (possibly) solve the mathematical 

programmi ng problem 

maximi ze c 
i =1 (Pi k / P i  k - 1 )  

subject t o  equation (A2) Cor (7)] and the logical constraints 

0 < P i k  5 1, i = 

Alternatively one migh t  use the express 

r 

i =1 
minimize c (1 

1 ,  ...) r. 
on 

A 

' i k  

'i k-1 
- 7) 
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as an "optimal i ty" cr i ter ion.  Both of these admit solutions w i t h  pi  k/6i k-l 1 ,  

even when such is  n o t  necessary. 

of the form 

T h u s ,  one might consider additional constraints 

a 6 / i ;  > 1 , i ~ S  i k  i k - 1  - 

where S 

example, Sa = Ir. 

by I r  - Cjl, j = 1 ,  2 ,  ..., r, and so forth. 

i s  an index s e t ;  a subset of { l , Z  ,..., r)  = Ir. When a = 1,  f o r  a 

may be the subsets of I, def ined  'r+1 Then S2, S3, ..., 

A 

Finally, i f  the cost  associated w i t h  a t ta ining a given value of P ik  were 

known, denoted C i ( 6 i k ) '  then one could (possibly) obtain a solution to  

r A 

minimize c ci(Pik) 
i =1 

subject t o  equation ( A 2 )  [equation ( 7 ) ,  Section V ]  and the logical constraints 

L 

0 P i k  5 1 ,  i = 1 ,  ..., r. 

The f inal  comment to  be made deals w i t h  approximate means of calculating 

p j k / 6 j k - 1  From the above discussion, i t  is  evident tha t  this r a t io  depends 

upon the re la t ive  magnitudes of the Pik-1. 

magnitudes of the P 

these are  prescribed. 

A 

I t  also depends upon the re la t ive  

themselves, and t h u s  calculations may be made only when 
A 

j k  
Their prescription may, however, involve some "optimal 'I 

solut ion,  as discussed above, so tha t  the following approximation may be useful 

only in understanding the behavior of the model. 
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A A 

<< 1 ,  for  a l l  j ,  a l l  o f  COMMENT 6 .  

the P i j ,  1 5 i - < r, j = k ,  k-1, are  of approximately the same order, 

and 

I f  r = rk - - rk-l, Pjk  << I ,  Pjk-l  
A 

A A A A 

‘ik - ‘ik ‘lk’ ‘ik-1 = a  P then - 
ik-1 l k - 1 ’  

- m i k - l ,  as before Here, W i k - l  - nik-l  - 
The assumptions allow equation (A3) to  be writ ten i n  the approximate 

form 

T h u s ,  

This may be solved, t o  yield 

A A 

Finally, replacing Plk-1 by ( l/ajk,l )Pjk-1 leads to  equation ( A 4 ) .  

44 



There are several points of interest  i n  equation (A4).  When r = 1 ,  as 

i n  the model defined by equations (1 )  and ( 5 )  of  Section V ,  the expression 

reduces to :  

A ( k )  
'k 'N.C. "k-1 

'k-1 N.C. Nk 
=po (A5 1 

( k )  - ( k - l )  th i s  l a t t e r  expression I f  i t  i s  fur ther  assumed tha t  PNeC . - pN.C.' 

(equation (A5)) reduces to  approximation (8) o f  Section VI, namely 

In both equation (A4) and ( A 5 )  the possibi l i ty  ex is t s  that  the rat ios  
( k )  ( k - 1 )  A A  

ii k/'i k-1 o r  Pk/Pk-l will be very sensitive to  variations in PN.c!PN.c 

whenever 'ik-l<' 1 (equation ( A 4 ) )  or Pk-1 << 1 (equation ( A 5 ) ) .  

i f  one desires that  Pk/Pk,l = 1, then, from ( A 5 ) ,  when Pk-1 << 1, 

A I 

For example, 
I A  I 

Thus, i f  P1 = W1/N2 = 1/2, and P N e C ,  = 0.999 = 1 - then i n  order that  

45 



P2 = also,  one needs t o  choose P N m C  = (1 - 5 1 0 - ~ ) ( 1  - 0.99895. 

Such a s l i g h t  decrease i n  overall  program goals then allows one t o  maintain 

the - same mission requirements a t  the second stage.  

on the other  hand, t h e n  from approximation (8), 

( 2 )  - (1) = 0.999, . - 'N.C. I f  PNeC 

i ,  0.5 10 '~.  

In this sec t ion ,  some of the behavior of the more general model of Section V 

In par t icu lar ,  there exist two additional ways, i n  this has been examined. 

model , t h a t  one may avoid the d i f f i cu l ty  o f  obtaining increasingly demanding 

mission non-contamination requirements. These are: 

- "optimal" solut ion of equation ( A 2 )  [or (7)  of Section V ]  f o r  the 

P i k ,  and 
A 

- very s l i g h t  periodic decreases in ( k )  whenever they seem jus t i f i ab le .  
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